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Abstract: In this paper, to reduce the computational cost of solving semilinear parabolic equations on a tensor product domain
Q c R? with d = 2 or 3, some two-scale finite element discretizations are proposed and analyzed. The time derivative in
semilinear parabolic equations is approximated by the backward Euler finite difference scheme. The two-scale finite element
method is designed for the space discretization. The idea of the two-scale finite element method is based on an understanding of
a finite element solution to an elliptic problem on a tensor product domain. The high frequency parts of the finite element solution
can be well captured on some univariate fine grids and the low frequency parts can be approximated on a coarse grid. Thus the
two-scale finite element approximation is defined as a linear combination of some standard finite element approximations on some
univariate fine grids and a coarse grid satisfying H = O(h'/?), where h and H are the fine and coarse mesh widths, respectively.
It is shown theoretically and numerically that the backward Euler two-scale finite element solution not only achieves the same
order of accuracy in the H'(£2) norm as the backward Euler standard finite element solution, but also reduces the number of
degrees of freedom from O(h~% x 7=1) to O(h~(@+1)/2 x 7=1) where 7 is the time step. Consequently the backward Euler two-
scale finite element method for semilinear parabolic equations is more efficient than the backward Euler standard finite element
method.
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1. Introduction difference and finite volume methods were proposed for
nonlinear parabolic problems [6, 7, 11, 28]. Two-grid

Consider the following semilinear parabolic equation: finite element methods for nonlinear Schrodinger equations
were developed in [19, 46]. Two-grid mixed finite element

u — Au = f(u), (X,t)eQxJ, methods for nonlinear parabolic problems were studied in [8,

u=0, (X,t) € 00 x J, (1) 10]. Superconvergence properties of two-grid finite element

methods for semilinear parabolic problems were analyzed in
[35, 36]. The error estimates of the two-grid discontinuous
Galerkin method for nonlinear parabolic equations were
studied in [42].

To reduce computational complexity and storage
requirements further, in this paper we propose some two-
scale finite element discretizations for the semilinear parabolic
problem (1). That is, the time derivative in (1) is approximated
by the backward Euler finite difference scheme. The two-scale
finite element method is used for the space discretization. The
two-scale finite element approximations are constructed by
using a linear combination of some standard finite element

u(0) = uy, (X,t) € Q x {t =0},

where ) C R? is a tensor-product domain (d = 2,3), J =
(0,7 and u; = %. f(.) is twice continuously differentiable
and wuy is a given smooth function.

The mathematical theory of Galerkin finite element methods
for parabolic equation has been discussed systematically in
[37]. Superclose properties of finite element method for
linear parabolic problem were studied in [38]. The hp-
version discontinuous Galerkin finite element method was
proposed for semilinear parabolic problems in [20]. To
reduce computational cost, the two-grid methods with finite
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approximations on a coarse grid and some univariate fine
grids. The main idea of the two-scale discretizations is based
on an understanding of the frequency resolution of a finite
element solution to an elliptic problem. For a solution to
an elliptic problem, high frequency components can be well
approximated on a fine grid and low frequency components
can be computed on a relatively coarse grid (see, e.g.,
[1, 39, 40, 41, 44]). Moreover, it is known that for elliptic
problems on tensor product domains, some high frequencies
involve a tensor product of univariate low frequencies, hence
they can be handled numerically by a tensor product of
univariate fine and coarse grids [4, 5, 15, 25, 30, 31, 34].
It will be shown that on choosing H = O(h'/2) the backward
Euler two-scale finite element method achieves the same order
of accuracy as the backward Euler standard finite element
method while reducing the number of degrees of freedom
from O(h=% x 771) to O(h~(4t1/2 x 7=1) where 7 is the
time step for time discretization of (1).

The two-scale finite element method is related to the multi-
level sparse grid method [45]. To reduce computational cost,
the sparse grid method was proposed for elliptic boundary
value problems in which the multi-level basis was used [4,
5, 14, 16, 17, 25, 33, 34, 43]. The combination technique
[12, 15], which can be viewed as a variant of the sparse grid
method, has been developed. The two-scale finite element
discretization uses the two-level basis instead of the multi-level
basis [1, 43]. It has been proposed for linear boundary value
and eigenvalue problems [13, 18, 30, 31]. The two-level basis
is more flexible than the multi-level basis [25, 30].

The so-called superconvergence technique [13, 25, 30, 31,
34, 47] is used in analysis for the two-scale finite element
approximations. It has been applied to obtain asymptotic
error expansions of the finite element solutions by Lin et al.
[2, 23, 26, 27]. A related method is the so-called splitting
extrapolation method [21, 22, 48], which is based on the multi-
parameter asymptotic error expansions.

This paper is structured as follows. In Section 2, some
basic notation is presented. In Section 3, we present some
tensor product operators. A standard Galerkin finite element
method with the backward Euler finite difference scheme is
described. The related error estimate is proposed. In Section 4,
the two-scale finite element method with the backward Euler
finite difference scheme for semilinear parabolic problem is
presented. The theoretical analysis shows that the two-scale
finite element method is more efficient than the standard finite
element method. Numerical results to illustrate our theory are
presented in Section 5. Finally some concluding remarks are
given in Section 6.

2. Preliminaries

Let Q = (0,1)d (d = 2,3) and w be any measurable
subset of '. We will use standard notations for the Sobolev

'Though our analysis is for €2, it can be generalized to any tensor product
domain.

spaces W*P(w) and their associated norms and seminorms
[9]. When p = 2, let H*(w) = W%%(w) and || - ||s.00 =
|- ls.2.0- Let HY(Q) = {v € HY(Q) : v |sgo= 0}, where
v |sn= 0in the sense of traces. Let H ~*(£2) be the dual space
of H} (). Write (-, -) for the L*(2) inner product.

Write Ny for the set of all nonnegative integers. Let Z; =

{1,2,...,d}. For each function w € W*P(Q), set
o 0%w

D¢ = .

(D 0)(0) = (i -+ o) @)
where o = (aj,a9,...,aq) € N¢ and z =
(z1,22,...,24) € Q. For general d-dimensional vector
X = (z1,29,...,2q9) € R, let x* = . xy? and
xa = (z100, ..., 2q0q).

For a real number ¢t € R, let
ta = (tag, ..., tag).

The notation o < 3 denotes o; < f; fori € Zg, a, B € Ng
throughout this paper.
We need the so-called mixed Sobolev space:

W3 (w) .= {v e H*(w) : D e L*(w),
0 < a<2e, |a =3},

with its natural norms || - [[wes(y [34], where 0 =
0,...,0) eR% e=(1,...,1) € R%and |a| = a1+ +aq.
Lete; = (0,...,0,1,0,...,0) € R? for each i € Zg, which
means only the i component of e; is 1 and all other ones are
0. Set & = e — e;. The notation A < B means A < CB
for constant C' which only depends on the data of the problem
and does not depend on mesh parameters. We use the notation

A = O(B) to denote |A| < B.

3. A Galerkin Finite Element Method

The variational form of (1) is to find u : J +— H}(2) such
that

{(ut,v)—i-(Vu,Vv):(f(u),v), Yo € H(Q), o

U(Xvo)ZUO(X)a X eq,

where (f(u),v) = [, fo.

Let 7"[0, 1] be the uniform mesh, where h = 1/N € [0, 1]
is the mesh size with N € Ny /{0}. Let S"[0,1] C C[0,1] be
the associated piecewise linear finite element space.

Seth = (hy,...,hq) and h = 113;1<xdhj with h; = 1/N;

for N;j € No/{0}, j € Zg. Define a tensor-product mesh on
Q= [0,1]4 by

Q) := T"[0,1] x --- x T"[0,1].
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The corresponding tensor product spaces of piecewise d-
linear functions on € are

SB(Q) :=8M[0,1]®---® S5"0,1]

and
S8(Q) = S*Q) N HLQ).

The standard Lagrange interpolation operator Iy, : C(2) —
SB(Q) is defined by

d
Ih = Ihlel O« OIhded = HIhiei'
i=1
Here, I : C(2) — C(Q) denotes the identity operator.
The Ritz projector Ry, : H} () — SB(Q) is defined by
(V(w — Rpw), Vo) =0, Yu e SHQ), (3)
for each w € HE(£2). There holds that [3, 9, 23, 25, 48]

|w — Rywllo.q + hllw — Raw|1.a < R wl2a, @)

[Ihw — Rawl|1,0 S h2|lwllwesq), (5)
for each w € HE(Q) WE3(Q).

Let {ty|t, = n7, 0 < n < N} be a uniform partition in
time with time step 7 and u™ = w(X, ¢,,). For a sequence of a
functions {¢"}N_,, we denote D, ¢" = (¢" —¢"~1)/7. Then
with the mesh and trial space in Section 2, the backward Euler
scheme of (2) is: find u! € S®(Q) forn = 1,2,---, N such
that

{ (Drus,v) + (Vi Vo) = (f(ui), vn) Vo € SE(), o

u), = Ruuo(X), X € Q.

The following Lemma for superclose property is a
generalization of Theorem 2.1 in [36] where only two-
dimensional case is mentioned and H?3({)) instead of
WE3(Q) is used.

Lemma 3.1. Let v and uj be the solution of (2) and (6),
respectively. Assume that u € L®(J;WE3(Q)), u; €
L3(J; H?(2)), and uyy € L*(J; L%(Q)), then

lufy = " 10 < CR(lullfopwos@)y (D
Hlluell 2z @) ? + Crlluell Lo (102 ())-

Algorithm4.1. Forn=1,2,---, N,
1. find uy, € SEe(Q) such that

Proof. By (5) and the proof of Theorem 2.1 in [36], we can
obtain this conclusion directly.

By Lemma 3.1 we have the following result immediately.
Similar result has been proposed in [35] for two-dimensional
case with different proof.

Theorem 3.1. Let u and up, be the solution of (2) and
(6), respectively. Assume that u € L>®(J; WE3(Q)), u; €
L2(J; H?(R2)), and uy € L>°(J; L?(2)), then

[u" —upllio Sh+T (®)

4. Two-scale Finite Element Method

In this section, we propose two-scale finite element
discretizations for the semilinear parabolic problem.

Let h,H € (0,1) and assume that H/h is a positive
integer. In practice we choose h < H. Let wpq H(e—a) €
ghetH(e=2) () for 0 < o < e. Following [29, 30, 32], we
define a Boolean sum as follows

d
A
BilieWhe = thei-&-Héi — (d — Nwge,
i1

Vwpe € SEe(Q), 9)

in which each summand uses a mesh of width A in at most
one coordinate direction. For example, if d = 2, we have
BI}}I HWhh = WpH + WHHL — WHH- If d = 3, we have
B;LI,H’Hwh,h,h = Wh,H,H + WHhLH +WH HL — 2WH,H,H-

In our analysis, we need the following result [13, 22, 24, 29,
30].

Proposition 4.1. If w € C(Q) N W3(Q), then

HHB]h{eIhew — Ihew‘ll,Q + ||BIh{eIhew

—Ihe’wH()ﬂ SH?’H’LUHWG,?;(Q). (10)
Our first algorithm is the basic two-scale finite element
discretization with the backward Euler finite difference
scheme, in which at each time step the two-scale finite element
solution is a linear combination of standard finite element
solutions on a coarse grid and some univariant fine grids.

{ (DTU’?I97U) + (vu?—;ﬁy VU) = (f(uT;Ie)7U) VU € Sé{e(Q)a

0
Ue = RHeUO:

and for each i € Zg, find ully | s € S5 % (Q) such that

{ (DTu’;lleiJrHéi ’ 1}) + (Vu’geiJrHéi ’ VU) = (f(u;llez+Hé1)7 ’U) Vo € S(})Lei+Héi (Q)7

0 — N
Uhe,+Ha; = Llhe;+He,; Uo-
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2. (Two-scale solution) Set
(@f1e)" = Blietife = Z Une, 4 1e, — (d — L)t
Theorem 4.1. Assume that u € HE(Q) N W 3(Q) and u is the solution of (2), then
lu” = (@e)" 10 S h+ H? + 7. (1)

Proof. Because C(Q) N HE () N WE3(Q) is dense in HE(Q) N W3(£2), we only need to prove (11) for u € C(Q) N
H () N WE3(Q). Using the definition (u%,)" = By ull,, we have

d

[uhe = ()" 1.0 < [Hnet" = uiellne + D ne+He ™ — o, 1 me, 1.0
=1
+(d =D Igeu” — ufellie + [net” — BleInet™|1.0

SH+m,
where Lemma 3.1 and Proposition 4.1 are used in the last inequality. Thus, we have
lu™ = (o) 1.0 S h+ H? + 7.

Our second two-scale finite element discretization with the backward Euler finite difference scheme is described in Algorithm
4.2. In this algorithm, at each time step we solve a semilinear system on a coarse grid and some linear systems on some partially
fine grids.

Algorithm4.2. Forn=1,2,---, N,
1. Compute semilinear problem on the coarse grid: find u%,, € S®(Q) such that

(Drtfye,v) + (Vufe, Vo) = (f(ufe),v) Vo € S§ie(9),
’U,%e = RHeuo.

2. Compute linear problems on some partially fine grids in parallel: for each i € Zg, find uj,, | e, € SheitH € () such
that

{ <DT{LZGL+H§L7 U) + (va;lljeb+HéL7vv) = (f(u?{e) + f/(u%e)(aZeL+HéL - uTIL{e)’ U) Vv e Sgel+Hé7 (Q)’
ﬂ’%eiJrHéi = Rhe,+He, Uo-

3. (Two-scale solution) Set
= ZﬁZeiJrHéi — (d = 1)ufre.
Theorem 4.2. Assume that u € HE(Q) N W 3(Q) and w is the solution of (2), then
[u — (@%e)" o S h+H? + 7. (12)

Proof. Again we only need to prove (12) for u € C(Q) N HE(Q) N WE3(Q) since C(Q) N HE () N WE3(Q) is dense in
HE(Q) N WE3(Q). Using the definition of (i)™, we have

HU;LLe (uHe ||1 Q _H Z uhez-i-He 1)UTFLIe - U’Ze”LQ

d
S Z |‘a’;LLerL+Hé1 - uZeL—i-Hél ||17Q + HuZe - B?IeuZe”LQ'

By Theorem 3.1 in [36], which can be generalized directly for three-dimensional case, we have

1’Q§H2+T.

||aZei+Héi - uZei+Héi Lo S HQZeiJrHéi — Ihe,+me,u" |10 + [lhe, + e, u™ — uZei+Héi
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Thus, we have
lu™ = (k)" 10 S h+ H? + .

Remark 4.1. Comparing Theorem 3.1 with Theorems 4.1
and 4.2, we can see that if we choose h = O(H?) then
the approximate solutions (i)™ and (@)™, obtained from
Algorithms 4.1 and 4.2, can achieve the same accuracy as uj,
from the standard discretization (6), while both (@} il o)" and
()™ require only O(h~(4+1)/2 x 7=1) degrees of freedom
compared with O(h~¢ x 771) degrees of freedom required
by uy,. Hence the two-scale finite element discretizations
(Algorithms 4.1 and 4.2) are more efficient than the standard
finite element discretization (6). Moreover, in Algorithm 4.2
one only need to solve the semilinear parabolic problem on
the coarse mesh, hence Algorithm 4.2 is even better than
Algorithm 4.1.

S. Numerical Examples

In this section, some numerical examples are presented to
show the efficiency of the two-scale finite element method.
To optimize the computational cost, in all of the numerical
experiments we choose h = H? and 7 = h.

Example 1. Consider the following semilinear parabolic

equation:
up—Au—sinu=g, (X,t)€QxJ,
u=0, (X,t) € 00 x J, (13)
u(0) = uyp, (X,t) € Q x {t =0},

where @ = (0,1) x (0,1) and J € (0,1].
computed from the exact solution

g and ug are

u(x,y,t) = e sin(rx) sin(my).

In Tables 1 and 2, the numerical results at ¢ = 0.5 and

= 1.0 are shown, respectively. The approximate solution
uj, , is obtained from the standard finite element discretization
(6) while (12';} )" and (@ )™ are computed by Algorithms
4.1 and 4.2, respectively. These results support Theorems 3.1,
4.1, and 4.2. It can be seen that the two-scale finite element
solutions (i ;)™ and (@} ;)™ achieves the same order of
accuracy as the standard finite element solution u? h.n» but with
much less computational cost. For example, when h=1 / 100,
at each time step, the exact degrees of freedom to get (i mE)"
and (uH g)" is only 100 x 10 while that for the standard
finite element solution is 100 x 100. Thus the two-scale finite
element discretizations are more efficient than the standard
finite element discretization. Moreover, in the process of
computing (@? H, )", one only need solve semilinear problem

on the coarse grid. Hence it is even better than (T/}{ )

Table 1. The errors at t = 0.5. Compare the two-scale finite element method with the standard finite element method.

1/h x1/H [lu® —ug pllx [[u” — (a5 1) |2 [u™ — (G 1)" |2
4x2 0.30343903 0.31174759 0.31173088

16 x4 0.07635569 0.07704568 0.07704581

64x8 0.01910041 0.01914644 0.01914647

100x 10 0.01222476 0.01224376 0.01224377
convergence rate O(h) O(h) O(h)

Table 2. The errors att = 1.0. Compare the two-scale finite element method with the standard finite element method.

/b x 1/H lu™ — up ol la™ — (& )" Iz Ju” — (@)l
4x2 0.18404477 0.18907448 0.18907027

16x4 0.04631234 0.04673028 0.04673031

648 0.01158504 0.01161291 0.01161292

100 10 0.00741472 0.00742623 0.00742623
convergence rate O(h) O(h) O(h)

Example 2. Consider the following semilinear parabolic
equation:

—Au+ud=g, (X,t)eQxJ,
w=0, (X,1) € 9 x J, (14)
u(0) = uo, (X,t) € Q x {t =0},

where Q@ = (0,1) x (0,1) and J € (0,1]. g and wug are

computed from the exact solution
u(z,y,t) = e~ Ty (1 —2)(1 - y).

Tables 3 and 4 show the numerical results at £ = 0.5 and
t = 1.0, respectively. The numerical results also support
Theorems 3.1, 4.1, and 4.2. It is shown that the two-scale
finite element discretizations, that is, Algorithms 4.1 and 4.2,
are very efficient compared with the standard finite element
discretization (6).
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Table 3. The errors at t = 0.5. Compare the two-scale finite element method with the standard finite element method.

1/h x 1/H lu™ —up wlla lu® — (8f, )" 2 u — (@fr)" 2
4x2 0.09193256 0.09878091 0.09877565

16 x4 0.02326492 0.02393244 0.02394007

64x8 0.00582061 0.00586443 0.00589146

100x 10 0.00372531 0.00374325 0.00378199

convergence rate O(h) O(h) O(h)

Table 4. The errors att = 1.0. Compare the two-scale finite element method with the standard finite element method.

1/h x1/H lu® —ug nllx llu® — (F,50)" 2 llu® — (8 )"l
4x2 0.05576004 0.05991326 0.05991179

16 x4 0.01411090 0.01451574 0.01451675

64 %8 0.00353038 0.00355696 0.00356019

100x 10 0.00225952 0.00227040 0.00227468
convergence rate O(h) O(h) O(h)

6. Conclusion

In this paper, the backward Euler two-scale finite element
algorithms (Algorithms 4.1 and 4.2) for semilinear parabolic
problems are proposed. Theoretical analysis and numerical
examples show that on choosing h = O(H?) the backward
Euler two-scale finite element approximations yield the same
accuracy as the backward Euler standard finite element
solution but much less computational cost. Besides, on the
univariate fine grids, some semilinear problems are solved
in Algorithm 4.1 while some linear problems are solved in
Algorithm 4.2. Hence Algorithm 4.2 is even more efficient
than Algorithm 4.1.
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